First: Measures of center(Mode, median, and mean)
Mode: Refers to the data value that is most frequently observed
Example: what is the mode of 154, 139, 154,192,180,140,154,155,192
The mode is 154

Median: Refers to the data value that is positioned in the middle of an ordered data set

Median= $\quad \underline{n+1}$ 2

Example: what is the median of 139, 140,154,154,154,155,180,192,192

139

The mean: is the average of the numbers
The mean is summation of all data values divided by total number of data vales

N
\# X= score
$\Sigma=$ sum
$4 \mathrm{~N}=$ how many numbers

Example: what is the mean of 2, 7, and 9
Mean $=\quad 2+7+9$
3

Second: Measures of spread (Range, Variance standard deviation, and standard error)

The range= The range is the maximum minus minimum
Range $=$ Max- Min
Example: what is the range of 2, 7, 9

$$
\begin{aligned}
\text { Range } & =\text { Max- Min } \\
& =9-2 \\
& =7
\end{aligned}
$$

* Variance: It measures how far each number in the set is from the mean

Variance=

$$
\begin{aligned}
& X=\text { score } \\
& \bar{X}=\text { mean } \\
& \Sigma=\text { sum } \\
& N=\text { how many numbers }
\end{aligned}
$$

Example: What is the Variance of $10,12,16,19,20$

x	$(x-\bar{x})$	$(x-\bar{x})^{2}$
10	$10-15.4=-\mathbf{5 . 4}$	$(-5.4)^{2}=\mathbf{2 9 . 1 6}$
12	$12-15.4=-\mathbf{3 . 4}$	$(-3.4)^{2}=\mathbf{1 1 . 5 6}$
16	$16-15.4=\mathbf{0 . 6}$	$(0.6)^{2}=\mathbf{0 . 3 6}$
19	$19-15.4=\mathbf{3 . 6}$	$(3.6)^{2}=\mathbf{1 2 . 9 6}$
20	$20-15.4=\mathbf{4 . 6}$	$(4.6)^{2}=\mathbf{2 1 . 1 6}$
$\bar{x}=15.4$		$\Sigma(x-\overline{\mathbf{x}})^{2}=\mathbf{7 5 . 2}$

Variance $=$ 75.2

5-1
$=18.8$

Standard deviation: is a number used to tell you how values are spread out from the mean. A low standard deviation means that most of the numbers are very close to the average. A high standard deviation means that the numbers are spread out.

Standard deviation $=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{N-1}}$
$x=$ score
$\bar{x}=$ mean
$\Sigma=$ sum
$\mathrm{N}=$ how many numbers

Example: What is the standard deviation of 10,12,16,19,20

x	$(x-\bar{x})$	$(x-\bar{x})^{2}$
10	$10-15.4=-\mathbf{5 . 4}$	$(-5.4)^{2}=\mathbf{2 9 . 1 6}$
12	$12-15.4=-\mathbf{3 . 4}$	$(-3.4)^{2}=\mathbf{1 1 . 5 6}$
16	$16-15.4=\mathbf{0 . 6}$	$(0.6)^{2}=\mathbf{0 . 3 6}$
19	$19-15.4=\mathbf{3 . 6}$	$(3.6)^{2}=\mathbf{1 2 . 9 6}$
20	$20-15.4=\mathbf{4 . 6}$	$(4.6)^{2}=\mathbf{2 1 . 1 6}$
$\bar{x}=15.4$		$\Sigma(x-\overline{\mathbf{x}})^{2}=\mathbf{7 5 . 2}$

Standard deviation $=\sqrt{\frac{75.2}{5-1}}=4.336$

Standard error :Standard error of the mean tells you how accurate your estimate of the mean is likely to be
S.E. $=\quad$ Standard deviation
$=\frac{4.336}{\sqrt{5}}$

